Search results for "induced smoothing"

showing 4 items of 4 documents

Induced smoothing in LASSO regression

The thesis is being carried out with the National research Council at the Institute of Biomedicine and Molecular Immunology "Alberto Monroy" of Palermo, where I am a fellow, under the supervision of MD Stefania La Grutta. Our research unit is focused on clinical research in allergic respiratory problems in children. In particular, we are interested in to assess the determinants of impaired lung function in a sample of outpatient asthmatic children aged between 5 and 17 years enrolled from 2011 to 2017. Our dataset is composed by n = 529 children and several covariates regarding host and environmental factors. This thesis focuses on hypothesis testing in lasso regression, when one is interes…

LASSO regression; Induced smoothing; Sandwich formula; Sparse models; Variable selection.Sparse modelVariable selection.Induced smoothingSandwich formulaSettore SECS-S/01 - StatisticaLASSO regression
researchProduct

Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach

2017

Summary This paper is concerned with interval estimation for the breakpoint parameter in segmented regression. We present score-type confidence intervals derived from the score statistic itself and from the recently proposed gradient statistic. Due to lack of regularity conditions of the score, non-smoothness and non-monotonicity, naive application of the score-based statistics is unfeasible and we propose to exploit the smoothed score obtained via induced smoothing. We compare our proposals with the traditional methods based on the Wald and the likelihood ratio statistics via simulations and an analysis of a real dataset: results show that the smoothed score-like statistics perform in prac…

Statistics and Probability010504 meteorology & atmospheric sciencesInterval estimationBreakpointinduced smoothingScore01 natural sciencesConfidence intervalchangepoint010104 statistics & probabilitypiecewise linear relationshipconfidence intervalscore inferenceStatistics0101 mathematicsStatistics Probability and UncertaintySegmented regressionSettore SECS-S/01 - StatisticaStatisticSmoothing0105 earth and related environmental sciencesMathematicsAustralian & New Zealand Journal of Statistics
researchProduct

The Induced Smoothed lasso: A practical framework for hypothesis testing in high dimensional regression.

2020

This paper focuses on hypothesis testing in lasso regression, when one is interested in judging statistical significance for the regression coefficients in the regression equation involving a lot of covariates. To get reliable p-values, we propose a new lasso-type estimator relying on the idea of induced smoothing which allows to obtain appropriate covariance matrix and Wald statistic relatively easily. Some simulation experiments reveal that our approach exhibits good performance when contrasted with the recent inferential tools in the lasso framework. Two real data analyses are presented to illustrate the proposed framework in practice.

Statistics and ProbabilityStatistics::TheoryInduced smoothingEpidemiologyComputer scienceFeature selectionWald test01 natural sciencesasthma researchStatistics::Machine Learning010104 statistics & probability03 medical and health sciencesHealth Information ManagementLasso (statistics)Linear regressionsparse modelsStatistics::MethodologyComputer Simulation0101 mathematicssandwich formula030304 developmental biologyStatistical hypothesis testing0303 health sciencesCovariance matrixlung functionRegression analysisStatistics::Computationsparse modelResearch DesignAlgorithmSmoothingvariable selectionStatistical methods in medical research
researchProduct

The induced smoothed LASSO

2016

We propose a new lasso-type estimator of regression coefficients for regression models. Our proposal relies on the recent idea of induced smoothing and leads to estimators with sampling distribution somewhat close to the Normal one, regardless of their true value, along with the corresponding reliable covariance matrix. As a consequence inference (e.g. p-values) may be carried out relatively easily. We present results from some simulation experiments.

standard errorsinduced smoothinglassoSettore SECS-S/01 - Statistica
researchProduct